首页 期刊简介 最新目录 过往期刊 在线投稿 欢迎订阅 访客留言 联系我们
新版网站改版了,欢迎提出建议。
访客留言
邮箱:
留言:
  
联系我们

合作经济与科技杂志社

地址:石家庄市建设南大街21号

邮编:050011

电话:0311-86049879
友情链接
·中国知网 ·万方数据
·北京超星 ·重庆维普
金融/投资
林业资源开发与保护贷款风险评价
第642期 作者:□文/冯浩轩1 王 众2 金 融1 时间:2020/10/2 8:54:14 浏览:304次
[提要] 林业资源开发与保护贷款是我国农业政策性银行支持林业生态建设的贷款产品,但目前我国农业政策性银行对于相关贷款的偿债来源分析缺少量化手段。本文基于假设木材每亩收入与木材生产成本服从几何布朗运动,结合农业政策性银行A县支行林业项目贷款案例,对其还本付息风险进行评价与分析,并为其风险管理提出建议。
关键词:农业政策性银行;自营性项目贷款;几何布朗运动;风险评价
中图分类号:F83 文献标识码:A
收录日期:2020年6月11日
一、理论与实践回顾
林业资源开发与保护贷款(以下简称“林业项目贷款”)所属的涉农产业贷款是我国农业政策性银行的核心业务与主体业务。此类贷款支持符合我国“三农”建设导向的大中型项目,凸显了农业政策性银行的政策职能,在一定程度上促进了农业经济发展。此类贷款将政策性与商业性相结合,农业政策性银行在发挥支持国家林业发展战略规划作用的同时,还需要承担贷款的全部风险。
Kwak认为对于拥有较大投资规模的项目,银行将给予项目相应规模的贷款,因此所面临的风险会随着项目规模增长而增长。经营性林业项目贷款规模大、期限长,包含较多风险,需全面评估贷款风险。其第一还款来源主要为经营林业资源开发的现金流,有政策支持、政府调查立项、资本金先于贷款到位和项目运营公司一般为当地国有企业或上市公司的优势,主要风险是市场波动造成项目经济风险导致的项目还本付息困难。Tam提出未来拥有充裕现金流的项目更易于归还贷款。俞波和张曦在研究BOT项目时通过现金流测算考察项目经济风险,依靠对项目经营收入与经营成本的计算得出项目现金流。对于项目的经济风险,我国农业政策性银行目前主要采用的是财务报表分析和敏感性分析相结合的方式;具体到自营性林业资源开发与保护贷款的偿债能力分析,采用的是以项目计划产能,产品现行价格与风险系数相结合估计项目未来现金收入。史玉芳等人认为现行的项目贷款评估方式存在过分依赖可行性研究和财务因素分析的缺陷。陈游认为我国银行在风险管理中主要问题是风险量化程度不足。虽然我国农业政策性银行现行经济风险评价方法有很强的鲁棒性,但可能缺少对于林业项目贷款可能长达20年的贷款期限中木材市场价格与生产成本的波动中隐藏风险与收益的估计,且此类项目通常由新设项目法人经营,可能存在无法提供3年财务报表的情况,以上情形可能制约我国农业政策性银行的业务开展以及发挥政策职能作用。Marathe和Ryan认为对于自然资源的价格波动,适合使用几何布朗运动进行模拟。基于此,本文提出基于几何布朗运动(GBM)的农业政策性银行自营性林业资源开发与保护贷款风险评价方式。以农业政策性银行A县支行某自营性林业资源开发与保护贷款为例,运用GBM模拟项目期内木材价格与生产成本的波动,度量林业项目存续期间的经济风险因素造成的贷款还本付息风险,以此来决定是否给予项目借贷。这对我国农业政策性银行提高风险管理水平,促进业务发展,强化信贷支农具有现实意义。
二、评价设计
(一)重要假设。本文主要探讨的是优化农业政策性银行对于林业项目中的经济风险因素造成的贷款还本付息风险的评价方式。为了使研究与分析更具针对性,本文提出以下三点假设:一是项目政策支持、资本金按时到位、公司运营合理。项目风险为市场波动造成的经济风险。二是项目运营公司只有出售商品林木材取得销售收入这种现金流入方式,项目木材产量不变且每亩相等,于项目建设期结束后形成产能,建设期间的利息费用由项目资本金承担。三是项目每年年末付息一次,每年的还本金额在当年均匀付清,且项目运营公司只有在当年经营活动产生的现金流净值能够覆盖当年贷款还款本息总额的情况下,才能足额还款。
(二)模型构建。本文假设公司经营项目的期限为T年,为了方便估值,我们将期限分为N期,每期的长度△t为:
△t=T/N (1)
并且设定:
tn=△t·n n=1,2,…,N (2)
木材市场价格受到自然气候变化、市场需求、技术进步等因素影响呈现出阶段波动性和不稳定性。这将直接影响项目的运营收入,本文假设木材价格变动服从几何布朗运动:
dPce=?琢pPcedt+?滓pPcedzp (3)
其中,Pce为木材市场收购价格,单位为元/m3;dzp为维纳过程增量,dzp=?着p■,?着p为均值为0,标准差为1的正态随机分布;?琢p和?滓p为木材市场价格的漂移参数和波动参数。将式(3)离散化可得:
Pce(tn+1)=Pce(tn)exp[(?琢p-?滓2p/2)△t+?滓p(△t)1/2?着p] (4)
木材生产成本也受到经济形势、人力资源供给等市场因素的影响,年度木材生产成本也存在着不确定性,本文假设木材生产成本变动服从几何布朗运动:
dCce=?琢cCcedt+?滓cCcedzc (5)
其中,Cce为木材生产成本,单位为万元;dzc为维纳过程增量,dzc=?着c■,?着c为均值为0,标准差为1的正态随机分布;?琢c和?滓c为木材生产成本的漂移参数和波动参数。将式(5)离散化可得:
Cce(tn+1)=Cce(tn)exp[(?琢c-?滓2c/2)△t+?滓c(△t)1/2?着c] (6)
项目建设期为tB,第tn年的砍伐指标为Qce(tn),贷款余额为Ln,采取等额还款模式,每年还贷款为l,贷款利率为i,则在第tn年,项目的经营产生的现金流为:
CF(tn)=Qce(tn)·Pce(tn)-Cce(tn) (7)
项目当年还本付息金额为:
RCaI(tn)=i·Ln/2 if tn=1i·(Ln-1+Ln)/2 if 1<tn≤tBi·(l+2Ln)/2+l if tB<tn≤N (8)
根据假设2与假设3,对于林业项目贷款不出现还本付息风险,每期应满足:
if tn>tB,CF(tn)>RCaI(tn) (9)
运用蒙特卡罗方法模拟G条路径。对于满足式(9)的路径g,认为在此路径上项目不会出现还本付息风险,以此估计贷款的风险评价值:
U=P[CFg(tn)>RCaI(tn)] (10)
U值越高,代表了项目还本付息能力越强,贷款越不易出现还本付息风险。
三、案例分析
(一)数据与描述性统计
1、林业项目基础数据。案例选自江西省A县的林业产业发展与生态保护扶贫攻坚项目。A县是江西省重点集体林区,森林资源丰富。此项目的建设运营,有利于发挥当地森林资源的优势,支持当地经济发展,助力扶贫攻坚。数据根据项目《可行性研究报告》,为了简化运算,本文将项目产生的多种收益都换算为杉木出售收入,多种成本加总换算为单位木材生产成本,以砍伐指标代表项目的产出量。项目具体信息如表1所示。(表1)
2、林业市场基础数据。本文假设项目木材产量每亩相等,即木材每亩收入取决于当年木材市场价格,选取林业产品生产价格指数反映项目木材每亩收入的波动。对于经营成本的波动来自于员工工资与经营性费用都会受到市场价格的影响。考虑到项目位于农村,本文选取农村居民消费价格指数反映项目营业成本的波动。数据来自于中国国家统计局,如表2所示。(表2)
3、贷款还本付息计划。根据项目《可行性研究报告》,客户倾向于每年等额还本,结合农业政策性银行贷款业务特点,预计贷款利率为5.145%(相当于2020年3月20日公布的五年期LPR利率加49.5个基点)。因此,设计还款计划如表3所示。(表3)
(二)贷款风险评价
1、参数估计。对于S满足几何布朗运动,基于式(3),有:
■=?琢dt+?滓dz (11)
且dz=?着■,将式(11)离散化得:
■=?琢·△t+?滓·?着·■ (12)
因为,?着为均值为0,标准差为1的正态随机分布,那么,
■~?椎(?琢△t,?滓2△t) (13)
?琢=E(■)/△t (14)
?滓=■ (15)
根据式(14)与式(15)可得随机变量相关参数,如表4所示。(表4)
2、评价值估计。通过Matlab编程可以得到该项目经济风险因素变动的模拟情况,如图1所示。并得出项目贷款的风险评价值为82.69%,即在实验假设条件下,项目贷款有82.69%的概率不会出现还本付息的风险。(图1)
3、敏感性分析。为了增加对贷款风险评价值的理解,需要进一步分析风险因素变化对贷款风险评价值的影响。在计算出实验条件下的贷款风险评价值的基础上,笔者计算了木材每亩收入、木材生产成本、砍伐指标的不确定性对林业项目贷款风险评价值的影响,如图2所示。(图2)
对于木材每亩收入波动率、木材生产成本波动率与砍伐指标的变动,林业项目贷款风险评价值表现出较高的敏感性。木材每亩收入波动率在小于0.03时,林业项目贷款风险评价值保持稳定为100%;之后,随着木材每亩收入波动率的增长,林业项目贷款风险评价值呈现出先加速后减速的下跌趋势。木材生产成本波动率在?滓c∈[0,0.1]区间内,林业项目贷款风险评价值与木材生产成本波动率呈正相关,在?滓c∈[0.1,0.2]区间内,林业项目贷款风险评价值与木材生产成本波动率呈负相关。在砍伐指标较低时,单位砍伐指标的增加能够较多地提升林业项目贷款风险评价值,随着砍伐指标的增长对于林业项目贷款风险评价值的提升也随之下降。
通过上述分析可知,林业项目受到不同风险因素的影响是不同的。相对于木材生产成本波动率,木材每亩收入波动率对林业项目贷款风险评价值的影响更大,并与林业项目贷款风险评价值呈负相关,对于自营性林业项目贷款调查、管理时需要关注木材市场的价格波动,增强对项目风险的防控意识;对于自营性林业项目来说,木材生产成本的稳定可能会增加项目还本付息的风险,对于此类因素应该区别关注;根据表1本文假设的砍伐指标为62,000亩,如图2所示,砍伐指标在62,000亩左右的增长对于林业项目贷款风险评价值的增长并不明显,而在62,000亩左右的减少却会加速林业项目贷款风险评价值的衰减,在本文的假设中,砍伐指标代表了林业项目的实际产出,因此在本文假设条件下,农业政策性银行应密切关注项目木材减产状况,避免出现相关风险。
(三)还本付息计划优化。在实验假设中,项目的还本付息来源全部为项目当年经营活动产生的现金流。通过蒙特卡洛方法模拟的项目每年经营活动产生的现金流净值,如图3所示。(图3)
项目每年经营活动产生的现金流净值的均值与方差,如表5所示。(表5)
通过图3、表3与表5可以得知,每年项目经营活动产生的现金流净值期望大于当年还本付息总额,但方差较大,因此在某些路径上可能会出现还本付息风险。项目经营活动产生的现金流净值的期望值是每年增加的,而项目的还本付息额却逐年下降;如果调整还款计划,使得还本付息计划与项目还款来源的变化相匹配,将能够有效增强项目还本付息能力,提升项目贷款风险评价值。调整后的项目还本付息计划,如表6所示。(表6)
将调整后的项目还本付息计划代入原模拟,得到优化后的林业项目贷款风险评价值U'为87.32%,相较于林业项目贷款风险评价值原值U上升了4.63%。通过分析林业项目经营产生的现金流的特点,有针对性地调整项目还本付息计划,将有效地提升林业项目贷款的风险评价值,降低出现还本付息风险的概率。
四、主要结论及建议
本文基于假设木材价格与生产成本的波动服从几何布朗运动,度量林业贷款存续期间包含的还本付息风险。通过蒙特卡罗模拟方法得到林业项目贷款风险评价值,对林业项目贷款风险进行评价;还比较了木材每亩收入、木材生产成本与砍伐指标三个因素对林业项目贷款风险评价值的影响;并结合分析林业项目贷款还本付息来源的特点,有针对性地调整项目还本付息计划,优化了林业项目贷款风险评价值,降低了林业项目贷款风险。
主要得出了以下三点结论及建议:一是运用GBM模拟木材价格与生产成本的波动,为度量林业项目贷款还本付息风险提供了方法,并得出了林业项目贷款风险评价值U,为林业项目贷款调查提供了量化方法支持,更加直观地展现了林业项目贷款中存在的风险,为贷款审查审批提供了参考。二是通过敏感性分析得出了,林业项目贷款风险评价值对木材每亩收入波动率呈负相关,并且单位变化率高,随着木材每亩收入波动率上升林业项目贷款风险评价值加速下降,在贷款调查与管理中应该重点关注;林业项目贷款风险评价值对木材生产成本波动率的增加呈现出先上升后下降的趋势,农业政策性银行应该防范木材生产成本波动率低时林业项目贷款包含的风险;林业项目贷款风险评价值在本文实验所取砍伐指标附近呈现出砍伐指标上升林业项目贷款风险评价值改善有限,砍伐指标下降林业项目贷款风险评价值恶化明显的特点,农业政策性银行在贷款调查与管理时应该密切关注类似风险拐点,提升风险管控质量。三是通过分析林业项目经营产生的现金流净值的特点,并通过本文案例,调整林业项目贷款还本付息计划,将林业项目贷款风险评价值原值U=82.69%上升了4.63%,达到优化值U'=87.32%,提出了项目贷款还本付息计划应当与项目经营产生的现金流净值相匹配的观点。
(作者单位:1.中国农业发展银行萍乡市分行;2.成都理工大学管理科学学院)

主要参考文献:
[1]刘满丹,尹宗成.基于ADL与ECM模型探究农发行贷款与农业经济发展的关系[J].长春理工大学学报(社会科学版),2015.28(7).
[2]Kwak Y H.Analyzing Asian infrastructure development privatization market[J].Journal of Construction Engineering and Management,2002.128(2).
[3]Tam C M.Build-operate-transfer model for infrastructure developments in Asia: reasons for successes and failures[J].International Journal of Project Management,1999.17(6).
[4]俞波,张曦.BOT项目经济风险指标及其度量方法[J].福州大学学报(自然科学版),2004(3).
[5]史玉芳,康珅,宋平平.基于风险分析的商业银行项目贷款评估改进研究[J].数学的实践与认识,2018.48(4).
[6]陈游.巴克莱银行风险管理实践及其启示[J].财经科学,2011(12).
[7]Marathe R R,Ryan S M.On the validity of the geometric Brownian motion assumption[J].The Engineering Economist,2005.50(2).
[8]刘祖军.杉木小径材木材价格趋势分析预测[J].林业调查规划,2007(6).
[9]Sheldon M Ross.应用随机过程:概率模型导论(第11版)[M].龚光鲁(译).北京:人民邮电出版社,2016.

 
版权所有:合作经济与科技杂志社 备案号:冀ICP备12020543号
您是本站第 3402643 位访客